Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Asymmetric Interhemispheric Transfer in the Auditory Network: Evidence from TMS, Resting-State fMRI, and Diffusion Imaging.

Identifieur interne : 000E65 ( Main/Exploration ); précédent : 000E64; suivant : 000E66

Asymmetric Interhemispheric Transfer in the Auditory Network: Evidence from TMS, Resting-State fMRI, and Diffusion Imaging.

Auteurs : Jamila Andoh [Allemagne] ; Reiko Matsushita [Canada] ; Robert J. Zatorre [Allemagne]

Source :

RBID : pubmed:26511249

Descripteurs français

English descriptors

Abstract

Hemispheric asymmetries in human auditory cortical function and structure are still highly debated. Brain stimulation approaches can complement correlational techniques by uncovering causal influences. Previous studies have shown asymmetrical effects of transcranial magnetic stimulation (TMS) on task performance, but it is unclear whether these effects are task-specific or reflect intrinsic network properties. To test how modulation of auditory cortex (AC) influences functional networks and whether this influence is asymmetrical, the present study measured resting-state fMRI connectivity networks in 17 healthy volunteers before and immediately after TMS (continuous theta burst stimulation) to the left or right AC, and the vertex as a control. We also examined the relationship between TMS-induced interhemispheric signal propagation and anatomical properties of callosal auditory fibers as measured with diffusion-weighted MRI. We found that TMS to the right AC, but not the left, resulted in widespread connectivity decreases in auditory- and motor-related networks in the resting state. Individual differences in the degree of change in functional connectivity between auditory cortices after TMS applied over the right AC were negatively related to the volume of callosal auditory fibers. The findings show that TMS-induced network modulation occurs, even in the absence of an explicit task, and that the magnitude of the effect differs across individuals as a function of callosal structure, supporting a role for the corpus callosum in mediating functional asymmetry. The findings support theoretical models emphasizing hemispheric differences in network organization and are of practical significance in showing that brain stimulation studies need to take network-level effects into account.

DOI: 10.1523/JNEUROSCI.2333-15.2015
PubMed: 26511249
PubMed Central: PMC6605461


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Asymmetric Interhemispheric Transfer in the Auditory Network: Evidence from TMS, Resting-State fMRI, and Diffusion Imaging.</title>
<author>
<name sortKey="Andoh, Jamila" sort="Andoh, Jamila" uniqKey="Andoh J" first="Jamila" last="Andoh">Jamila Andoh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany, and Montreal Neurological Institute, McGill University, Canada and International Laboratory for Brain, Music, and Sound Research, Montreal, Quebec H3A 2B4, Canada jamila.andoh@zi.mannheim.de robert.zatorre@mcgill.ca.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany, and Montreal Neurological Institute, McGill University, Canada and International Laboratory for Brain, Music, and Sound Research, Montreal, Quebec H3A 2B4</wicri:regionArea>
<wicri:noRegion>Quebec H3A 2B4</wicri:noRegion>
<wicri:noRegion>Quebec H3A 2B4</wicri:noRegion>
<wicri:noRegion>Quebec H3A 2B4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Matsushita, Reiko" sort="Matsushita, Reiko" uniqKey="Matsushita R" first="Reiko" last="Matsushita">Reiko Matsushita</name>
<affiliation wicri:level="4">
<nlm:affiliation>Montreal Neurological Institute, McGill University, Canada and International Laboratory for Brain, Music, and Sound Research, Montreal, Quebec H3A 2B4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Montreal Neurological Institute, McGill University, Canada and International Laboratory for Brain, Music, and Sound Research, Montreal, Quebec H3A 2B4</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zatorre, Robert J" sort="Zatorre, Robert J" uniqKey="Zatorre R" first="Robert J" last="Zatorre">Robert J. Zatorre</name>
<affiliation wicri:level="4">
<nlm:affiliation>Montreal Neurological Institute, McGill University, Canada and International Laboratory for Brain, Music, and Sound Research, Montreal, Quebec H3A 2B4, Canada jamila.andoh@zi.mannheim.de robert.zatorre@mcgill.ca.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Montreal Neurological Institute, McGill University, Canada and International Laboratory for Brain, Music, and Sound Research, Montreal, Quebec H3A 2B4</wicri:regionArea>
<wicri:noRegion>Quebec H3A 2B4</wicri:noRegion>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26511249</idno>
<idno type="pmid">26511249</idno>
<idno type="doi">10.1523/JNEUROSCI.2333-15.2015</idno>
<idno type="pmc">PMC6605461</idno>
<idno type="wicri:Area/Main/Corpus">000C90</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C90</idno>
<idno type="wicri:Area/Main/Curation">000C90</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C90</idno>
<idno type="wicri:Area/Main/Exploration">000C90</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Asymmetric Interhemispheric Transfer in the Auditory Network: Evidence from TMS, Resting-State fMRI, and Diffusion Imaging.</title>
<author>
<name sortKey="Andoh, Jamila" sort="Andoh, Jamila" uniqKey="Andoh J" first="Jamila" last="Andoh">Jamila Andoh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany, and Montreal Neurological Institute, McGill University, Canada and International Laboratory for Brain, Music, and Sound Research, Montreal, Quebec H3A 2B4, Canada jamila.andoh@zi.mannheim.de robert.zatorre@mcgill.ca.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany, and Montreal Neurological Institute, McGill University, Canada and International Laboratory for Brain, Music, and Sound Research, Montreal, Quebec H3A 2B4</wicri:regionArea>
<wicri:noRegion>Quebec H3A 2B4</wicri:noRegion>
<wicri:noRegion>Quebec H3A 2B4</wicri:noRegion>
<wicri:noRegion>Quebec H3A 2B4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Matsushita, Reiko" sort="Matsushita, Reiko" uniqKey="Matsushita R" first="Reiko" last="Matsushita">Reiko Matsushita</name>
<affiliation wicri:level="4">
<nlm:affiliation>Montreal Neurological Institute, McGill University, Canada and International Laboratory for Brain, Music, and Sound Research, Montreal, Quebec H3A 2B4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Montreal Neurological Institute, McGill University, Canada and International Laboratory for Brain, Music, and Sound Research, Montreal, Quebec H3A 2B4</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zatorre, Robert J" sort="Zatorre, Robert J" uniqKey="Zatorre R" first="Robert J" last="Zatorre">Robert J. Zatorre</name>
<affiliation wicri:level="4">
<nlm:affiliation>Montreal Neurological Institute, McGill University, Canada and International Laboratory for Brain, Music, and Sound Research, Montreal, Quebec H3A 2B4, Canada jamila.andoh@zi.mannheim.de robert.zatorre@mcgill.ca.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Montreal Neurological Institute, McGill University, Canada and International Laboratory for Brain, Music, and Sound Research, Montreal, Quebec H3A 2B4</wicri:regionArea>
<wicri:noRegion>Quebec H3A 2B4</wicri:noRegion>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of neuroscience : the official journal of the Society for Neuroscience</title>
<idno type="eISSN">1529-2401</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult (MeSH)</term>
<term>Auditory Cortex (anatomy & histology)</term>
<term>Auditory Cortex (physiology)</term>
<term>Auditory Pathways (physiology)</term>
<term>Brain Mapping (MeSH)</term>
<term>Corpus Callosum (physiology)</term>
<term>Diffusion Tensor Imaging (MeSH)</term>
<term>Female (MeSH)</term>
<term>Functional Laterality (physiology)</term>
<term>Humans (MeSH)</term>
<term>Magnetic Resonance Imaging (MeSH)</term>
<term>Male (MeSH)</term>
<term>Nerve Net (physiology)</term>
<term>Rest (physiology)</term>
<term>Transcranial Magnetic Stimulation (MeSH)</term>
<term>Young Adult (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adulte (MeSH)</term>
<term>Cartographie cérébrale (MeSH)</term>
<term>Corps calleux (physiologie)</term>
<term>Cortex auditif (anatomie et histologie)</term>
<term>Cortex auditif (physiologie)</term>
<term>Femelle (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Imagerie par résonance magnétique (MeSH)</term>
<term>Imagerie par tenseur de diffusion (MeSH)</term>
<term>Jeune adulte (MeSH)</term>
<term>Latéralité fonctionnelle (physiologie)</term>
<term>Mâle (MeSH)</term>
<term>Repos (physiologie)</term>
<term>Réseau nerveux (physiologie)</term>
<term>Stimulation magnétique transcrânienne (MeSH)</term>
<term>Voies auditives (physiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Cortex auditif</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Auditory Cortex</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Corps calleux</term>
<term>Cortex auditif</term>
<term>Latéralité fonctionnelle</term>
<term>Repos</term>
<term>Réseau nerveux</term>
<term>Voies auditives</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Auditory Cortex</term>
<term>Auditory Pathways</term>
<term>Corpus Callosum</term>
<term>Functional Laterality</term>
<term>Nerve Net</term>
<term>Rest</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Brain Mapping</term>
<term>Diffusion Tensor Imaging</term>
<term>Female</term>
<term>Humans</term>
<term>Magnetic Resonance Imaging</term>
<term>Male</term>
<term>Transcranial Magnetic Stimulation</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adulte</term>
<term>Cartographie cérébrale</term>
<term>Femelle</term>
<term>Humains</term>
<term>Imagerie par résonance magnétique</term>
<term>Imagerie par tenseur de diffusion</term>
<term>Jeune adulte</term>
<term>Mâle</term>
<term>Stimulation magnétique transcrânienne</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Hemispheric asymmetries in human auditory cortical function and structure are still highly debated. Brain stimulation approaches can complement correlational techniques by uncovering causal influences. Previous studies have shown asymmetrical effects of transcranial magnetic stimulation (TMS) on task performance, but it is unclear whether these effects are task-specific or reflect intrinsic network properties. To test how modulation of auditory cortex (AC) influences functional networks and whether this influence is asymmetrical, the present study measured resting-state fMRI connectivity networks in 17 healthy volunteers before and immediately after TMS (continuous theta burst stimulation) to the left or right AC, and the vertex as a control. We also examined the relationship between TMS-induced interhemispheric signal propagation and anatomical properties of callosal auditory fibers as measured with diffusion-weighted MRI. We found that TMS to the right AC, but not the left, resulted in widespread connectivity decreases in auditory- and motor-related networks in the resting state. Individual differences in the degree of change in functional connectivity between auditory cortices after TMS applied over the right AC were negatively related to the volume of callosal auditory fibers. The findings show that TMS-induced network modulation occurs, even in the absence of an explicit task, and that the magnitude of the effect differs across individuals as a function of callosal structure, supporting a role for the corpus callosum in mediating functional asymmetry. The findings support theoretical models emphasizing hemispheric differences in network organization and are of practical significance in showing that brain stimulation studies need to take network-level effects into account.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26511249</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>02</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1529-2401</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>35</Volume>
<Issue>43</Issue>
<PubDate>
<Year>2015</Year>
<Month>Oct</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of neuroscience : the official journal of the Society for Neuroscience</Title>
<ISOAbbreviation>J Neurosci</ISOAbbreviation>
</Journal>
<ArticleTitle>Asymmetric Interhemispheric Transfer in the Auditory Network: Evidence from TMS, Resting-State fMRI, and Diffusion Imaging.</ArticleTitle>
<Pagination>
<MedlinePgn>14602-11</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1523/JNEUROSCI.2333-15.2015</ELocationID>
<Abstract>
<AbstractText>Hemispheric asymmetries in human auditory cortical function and structure are still highly debated. Brain stimulation approaches can complement correlational techniques by uncovering causal influences. Previous studies have shown asymmetrical effects of transcranial magnetic stimulation (TMS) on task performance, but it is unclear whether these effects are task-specific or reflect intrinsic network properties. To test how modulation of auditory cortex (AC) influences functional networks and whether this influence is asymmetrical, the present study measured resting-state fMRI connectivity networks in 17 healthy volunteers before and immediately after TMS (continuous theta burst stimulation) to the left or right AC, and the vertex as a control. We also examined the relationship between TMS-induced interhemispheric signal propagation and anatomical properties of callosal auditory fibers as measured with diffusion-weighted MRI. We found that TMS to the right AC, but not the left, resulted in widespread connectivity decreases in auditory- and motor-related networks in the resting state. Individual differences in the degree of change in functional connectivity between auditory cortices after TMS applied over the right AC were negatively related to the volume of callosal auditory fibers. The findings show that TMS-induced network modulation occurs, even in the absence of an explicit task, and that the magnitude of the effect differs across individuals as a function of callosal structure, supporting a role for the corpus callosum in mediating functional asymmetry. The findings support theoretical models emphasizing hemispheric differences in network organization and are of practical significance in showing that brain stimulation studies need to take network-level effects into account.</AbstractText>
<CopyrightInformation>Copyright © 2015 the authors 0270-6474/15/3514603-10$15.00/0.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Andoh</LastName>
<ForeName>Jamila</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany, and Montreal Neurological Institute, McGill University, Canada and International Laboratory for Brain, Music, and Sound Research, Montreal, Quebec H3A 2B4, Canada jamila.andoh@zi.mannheim.de robert.zatorre@mcgill.ca.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matsushita</LastName>
<ForeName>Reiko</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-7081-8292</Identifier>
<AffiliationInfo>
<Affiliation>Montreal Neurological Institute, McGill University, Canada and International Laboratory for Brain, Music, and Sound Research, Montreal, Quebec H3A 2B4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zatorre</LastName>
<ForeName>Robert J</ForeName>
<Initials>RJ</Initials>
<AffiliationInfo>
<Affiliation>Montreal Neurological Institute, McGill University, Canada and International Laboratory for Brain, Music, and Sound Research, Montreal, Quebec H3A 2B4, Canada jamila.andoh@zi.mannheim.de robert.zatorre@mcgill.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurosci</MedlineTA>
<NlmUniqueID>8102140</NlmUniqueID>
<ISSNLinking>0270-6474</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001303" MajorTopicYN="N">Auditory Cortex</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001306" MajorTopicYN="N">Auditory Pathways</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001931" MajorTopicYN="N">Brain Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003337" MajorTopicYN="N">Corpus Callosum</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056324" MajorTopicYN="N">Diffusion Tensor Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007839" MajorTopicYN="N">Functional Laterality</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008279" MajorTopicYN="N">Magnetic Resonance Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009415" MajorTopicYN="N">Nerve Net</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012146" MajorTopicYN="N">Rest</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050781" MajorTopicYN="N">Transcranial Magnetic Stimulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">callosal auditory fibers</Keyword>
<Keyword MajorTopicYN="N">interleaved silent steady state</Keyword>
<Keyword MajorTopicYN="N">probabilistic tractography</Keyword>
<Keyword MajorTopicYN="N">resting-state fMRI</Keyword>
<Keyword MajorTopicYN="N">theta burst stimulation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26511249</ArticleId>
<ArticleId IdType="pii">35/43/14602</ArticleId>
<ArticleId IdType="doi">10.1523/JNEUROSCI.2333-15.2015</ArticleId>
<ArticleId IdType="pmc">PMC6605461</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Neurology. 1999 Nov 10;53(8):1806-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10563632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3661-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10716702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2001 Mar 15;531(Pt 3):849-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11251064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2001 Apr;13(4):684-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11305897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2001 Aug 1;21(15):RC157</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Brain Mapp. 2002 Jan;15(1):1-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11747097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 2003 Aug;26(8):429-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12900174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2003 Jul 1;15(5):673-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12965041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Res. 1992;25(2):51-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1365702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Psychol. 1962 Jun;75:271-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13882420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Magn Reson Med. 2003 Nov;50(5):1077-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14587019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2003 Nov;20(3):1685-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14642478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Med Imaging. 2004 Feb;23(2):137-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14964560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2005 Jan 20;45(2):201-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15664172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2005 May 15;26(1):164-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15976020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16087444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2006 Jan 15;29(2):619-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16168674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2006 Feb 1;29(3):774-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16226896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Lang. 2006 Jul;98(1):57-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16519926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2006 Nov 27;409(1):57-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17049743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Jan 23;17(2):134-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17240338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2007 Jul;8(7):547-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17585307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2008 Apr;18(4):817-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17652468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2008 Mar 12;363(1493):1087-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17890188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2008 Jun;18(6):1281-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17965128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2007 Nov 7;27(45):12132-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17989279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2007 Dec 20;56(6):1127-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18093532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2008 Feb 6;151(3):921-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18160225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2009 Jan;19(1):72-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18403396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2008 Jun 18;28(25):6453-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2009 Jun;19(6):1322-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2009 Jul;19(7):1654-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19015374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2009 Jan 7;29(1):61-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19188601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2009 Apr 30;62(2):291-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19409273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2009 Oct 1;47(4):1579-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19501172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2010 Aug;22(8):1730-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19803692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Neurophysiol. 2009 Dec;120(12):2008-2039</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19833552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2011 Feb;23(2):349-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20146606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2011 Jan;21(1):56-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20382642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Psychiatry. 2010 Nov 1;68(9):825-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20708172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comp Neurol. 1990 Dec 1;302(1):29-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2086614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Neuroimag J. 2010 Jun 30;4:16-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20922048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18688-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20956297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2011 Jan;12(1):43-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21170073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2011 Feb 10;69(3):407-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21315253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Brain Res. 2011 Sep 30;223(1):211-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21530590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Psychol. 2011 Jul 15;2:161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21811478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2012 Jun;22(6):1455-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21878483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21229-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22160708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3516-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22315406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychologia. 2012 Jun;50(7):1308-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22387608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2012 Oct 1;62(4):2232-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22465297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2012 Sep 12;(67):e3985</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23007549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2014 Jul;24(7):1697-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23395849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2013 Jul 1;74:22-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23415949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2013 Oct 1;79:162-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23631993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2013 Oct 15;80:144-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23702415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2014 Jan 15;85 Pt 1:400-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23721726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):E3435-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23959883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2014 Jan 1;84:562-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24051357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Struct Funct. 2015 Mar;220(2):729-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24310352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Syst Neurosci. 2013 Dec 30;7:124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24416003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Neurobiol. 2014 Oct;28:142-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25064048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2016 Jan;26(1):211-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25183885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2014 Sep 3;34(36):12049-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25186750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2015 Jul 1;114:386-397</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25882754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electroencephalogr Clin Neurophysiol. 1996 Oct;101(5):412-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8913194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 1996 Sep-Oct;6(5):661-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8921202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1997 May 1;17(9):3178-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9096152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 1998 Aug;121(4):371-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9746143</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Canada</li>
</country>
<region>
<li>Québec</li>
</region>
<settlement>
<li>Montréal</li>
</settlement>
<orgName>
<li>Université McGill</li>
</orgName>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Andoh, Jamila" sort="Andoh, Jamila" uniqKey="Andoh J" first="Jamila" last="Andoh">Jamila Andoh</name>
</noRegion>
<name sortKey="Zatorre, Robert J" sort="Zatorre, Robert J" uniqKey="Zatorre R" first="Robert J" last="Zatorre">Robert J. Zatorre</name>
</country>
<country name="Canada">
<region name="Québec">
<name sortKey="Matsushita, Reiko" sort="Matsushita, Reiko" uniqKey="Matsushita R" first="Reiko" last="Matsushita">Reiko Matsushita</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E65 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E65 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26511249
   |texte=   Asymmetric Interhemispheric Transfer in the Auditory Network: Evidence from TMS, Resting-State fMRI, and Diffusion Imaging.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26511249" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021